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1 - Introduction

e Motivation

o Bees are the most important group
of pollinators [Klein et al. 2007,
Brown et al. 2016];

o Honeybee colonies have dwindled in
rates of 30% colony deaths
overwinter due to climate change B, .
and the use of agrochemicals; VDTN, oo iy R ks i O

o Whatever the causes, they all Sl
converge to the same point; harming
the thermoregulation capacity of
the colonies.




1 - Introduction

e Apicultura de precisao
o RSSFe loT;
o Monitoramento remoto de apiarios;
o Mineracdo e andlise de dados.

e Proposta R T T R T B T
o Inthis paper, we used machine o] gk
learning techniques to predict
homeostasis loss.
o We apply the Long Short-Term
Memory (LSTM) algorithm to forecast

the thermoregulation capacity (i.e. Figure 2. Dashboard overview of a general remote
homeostasis) loss in honeybee beehive monitoring system.
colonies.



2 - Related works

e Intropical climate, [Kridi et al. 2016] recognized thermal patterns to
detect bees’ pre-abandonment scenarios;

e |ntemperate climate, the hotter the bees perform the foraging, which
impacts the development of the pupae and the division of labor of the
bees [Winston 1991];

e The seasons of the year are also very important to the colony behavior
[Maciel et al. 2018].

e Thus, the loss of internal temperature control is an important indicator
related to the colony health, and may indicate if it is facing a problem.



3 - Material and methods

Dataset

(@)

(@)

(@)

Six different beehives;

An apiary located in the city of Newcastle upon Tyne, England;
Collected from September to November in 2017;

Table 1. Summary of beehive analyzed with good thermoregulation

beehives | latitude | longitude | #samples period sampling | therm.
9803 -1.628 | 54.971 603 Sep 3th-Nov 6th 2hs W.I.
9837 -1.516 | 54.994 1456 Sep 3th-Nov 6th lh I.I.
9841 -1.617 | 54.979 638 Sep 5th-Nov 6th 2hs n.r.
9848 -1.599 | 55.016 502 Sep 5th-Nov 2th 2hs n.r.
54440 | -1.628 | 54.971 606 Sep 3th-Nov 6th 2hs i
54460 | -1.616 | 54.970 1024 Aug 5th-Nov 6th 2hs W.I.




3 - Material and methods

e Preprocessing

o Exploratory Data Analysis (EDA)
m Basic statistics (mean, the standard
deviation, and quartiles), and the
skewness.

e Detection and removal of anomalies
o Interquartile Range;
e Data Resizing (Min-Max scaling)
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Fonte:
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3 - Material and methods

e Long Short-Term Memory (LSTM)

o Long Short-Term Memory (LSTM) is a specific RNN architecture that was designed to

model temporal sequences and their long-range dependencies more accurately than
conventional RNNs [Sak et al. 2014].
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3 - Material and methods

e Experiment Setup
o The data was separated in train (67%) and test (33%) sets;
o LSTM architecture with 4 hidden layers;
o A number of epochs equal to 100;
o The back propagation parameter (look back) was setted in 4 timestamps.
e Evaluation Metrics
o (i) MAE is the mean for all recorded absolute errors;
o (ii) MAPE is the mean absolute percentage error;
o (iii) RMSE measures the average of the squares of the errors, that is, the average squared
difference between the estimated values and what is estimated;
o (iv) R 2 provides a measure of how well observed outcomes are replicated by the model,
based on the proportion of total variation of outcomes explained by the model.



Results
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Figure 3. LSTM fitting (hive #9837)
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Figure 4. LSTM fitting (hive #9841)



Results

o
A

- Dataset 35 1
~ Train data
:J 20 — Test data 9 30 -
3 g
B 5 ] E B
a a
E E
e & 20 1
T 20 4 T
5 1. 5
g e Ul | 1 E T
15 4 ~—— Train data
' 10 | —— Test data
A T A L
Timestamp Timestamp
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Table 2. Evaluation Metrics for LSTM Algorithm for not thermoregulated beehives

Beehive | RMSE Train | RMSE Test | MAE | MAPE R?
9837 0.49 0.73 0.5651 | 2.3424 | 0.8876
9841 0.77 0.83 0.5658 | 1.9388 | 0.8543
9848 1.79 j 7 1.4282 | 8.3675 | 0.6978

54440 1.74 2.46 2.0794 | 13.614 | 0.7427
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Figure 7. LSTM fitting (hive #9803) Figure 8. LSTM fitting (hive #54460)

Table 3. Evaluation Metrics for LSTM Algorithm for thermoregulated beehives
Beehive | RMSE Train | RMSE Test | MAE | MAPE R?
9803 0.38 0.25 0.1854 | 0.5478 | 0.8677
54460 0.93 0.64 0.3102 | 0.9098 | 0.1276




Discussion

e The high amplitude of temperature and a declining pattern indicate a
sign of thermoregulation losses;

e According to [Heldmaier 1987] the colony capacity to survive cold
depends on maintenance of a steady state temperature, about 35°C;

e Some beehives the temperature fell more than 10°C, this could already be
a sign of trouble;

e |n extreme conditions of cold weather the bees take a protective behavior
and start a phonomena called the diapause.

e Loss inthe thermoregulation capability <-> high temperatures;
o brood death, wax melting, honey dehydrated;



Conclusion

e General proposal objective
o Predict thermoregulation loss;
e Main contribution

o Atrained Long Short-Term Memory (LSTM) algorithm to forecast the thermoregulation
capacity loss;

e Results
o Our results showed an error of only 0.5% in prediction for well-thermoregulated
beehives;

o The proposed solution was capable of predicting the thermoregulatory capacity loss of a
colony up to 8 hours before the homeostasis is lost in the nest.
e In perspective

o We intend to inform others features to LSTM, like internal humidity, hive activity, mean
fanning, mean flight noise, weight, external temperature, and external humidity.
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